Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Directional freeze‐cast Fe‐W lamellar foams with 10–33 at.% W show distinct microstructural evolutions during steam/hydrogen redox cycling between oxidized and reduced states at 800 ⁰C, depending on W concentration. The Fe‐18 W and Fe‐25 W foams exhibit a sufficient volume fraction of W‐rich phases – λ‐Fe2W to inhibit sintering for α‐Fe in the reduced state and FeWO4to inhibit sintering for Fe3O4in the oxidized state – thus forming ligaments comprising two phases (Fe/λ‐Fe2W and Fe3O4/FeWO4, respectively). In contrast, a Fe‐10 W foam with a lower volume fraction of W‐containing phases (λ‐Fe2W and FeWO4) shows lamellae densification as well as core‐shell structure formation, due to Fe outward diffusion during oxidation. While higher W concentration enhances the stability of lamellar structure in Fe‐W foams, degradation still occurs, via buckling of lamellae and swelling of foams after extensive cycling. In situ XRD characterization shows that W addition has a minor effect on the oxidation process but slows reduction due to the sluggish kinetics of FeWO4reduction. This influence is mitigated by the formation of nanocrystalline W‐rich phases due to the chemical vapor transport (CVT) mechanism during the reduction of FeWO4to boost the reaction kinetics during redox cycling.more » « less
-
Abstract Freeze‐cast Fe‐25 W (at%) lamellar foams show excellent resistance to degradation at 800 °C during steam‐hydrogen redox cycling between the metallic and oxide states, with fast reaction kinetics maintained up to at least 100 redox cycles with full Fe utilization. This very high stability stems from the sintering inhibition of W combined with the freeze‐cast architecture and the chemical vapor transport (CVT) mechanism of reduction. These three factors create a hierarchical porosity in the foam, consisting of i) macroscopic elongated channels, ii) micro‐scale sintering inhibition pores, and iii) submicron CVT pores. Microstructural characterization via SEM and EDS is combined with in situ XRD to fully explore the phase evolution and microstructural impact of W on Fe during redox cycling. Comparison with tapped Fe‐25 W (at%) powder beds reveals that the freeze‐cast channels and lamellae are not critical to the performance of the material.more » « less
-
Abstract An oxygen‐resistant refractory high‐entropy alloy is synthesized in microlattice or bulk form by 3D ink‐extrusion printing, interdiffusion, and silicide coating. Additive manufacturing of equiatomic HfNbTaTiZr is implemented by extruding inks containing hydride powders, de‐binding under H2, and sintering under vacuum. The sequential decomposition of hydride powders (HfH2+NbH+TaH0.5+TiH2+ZrH2) is followed by in situ X‐ray diffraction. Upon sintering at 1400 °C for 18 h, a nearly fully densified, equiatomic HfNbTaTiZr alloy is synthesized; on slow cooling, both α‐HCP and β‐BCC phases are formed, but on quenching, a metastable single β‐BCC phase is obtained. Printed and sintered HfNbTaTiZr alloys with ≈1 wt.% O shows excellent mechanical properties at high temperatures. Oxidation resistance is achieved by silicide coating via pack cementation. A small‐size lattice‐core sandwich is fabricated and tested with high‐temperature flames to demonstrate the versatility of this sequential approach (printing, sintering, and siliconizing) for high‐temperature, high‐stress applications of refractory high‐entropy alloys.more » « less
An official website of the United States government
